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The effect of rheological parameters on the time behavior of the free surface, 
residual mass in the vessel, and flow structure is determined for the process 
of draining a nonlinear-viscoplastic liquid from axisymmetric vessels. 

At present there are available a large number of studies on the process of drainage. 
The majority of these consider nonviscous liquids [i, 2]. Draining of a highly viscous 
Newtonian liquid was considered in quite full detail in [3]. An estimate of residual liq- 
uid mass in the film on the walls of conical and cylindrical vessel after draining of a 
power-law and viscoplastic liquid was obtained in [4]. 

i. Formulation of the Problem. We will consider the slow escape (Re << i) of a highly 
viscous liquid having an initially horizontal free surface from axisymmetric vessels. 

For low Reynolds numbers the flow is described by the following equations: 

v . H + p g  = 0, (1 )  

v.V = o. (2) 

Upon deformation a wide class of liquids manifest complex rheological properties, in- 
cluding, in particular, a nonlinear dependence of viscosity upon shear velocity and the 
presence of a yield point. The most general model suitable for describing flow of a non- 
linear viscoplastic liquid over a wide range of shear velocities is that proposed by Shul'man 
[5]: 

[ 4/n ]n 
T= i[2 L A1/----. ~ -~-~L 1/m An/m-le~j, i, ] = 1, 2, 3. (3 )  

From Eq. (1 )  w i t h  u s e  o f  t h e  e x p r e s s i o n  f o r  t h e  s t r e s s  t e n s o r  H = - p I  +T and c o n d i t i o n  (2)  
we can obtain an equation for the pressure 

VZP : V" (V" T). (4 )  

In  p l a c e  o f  o r i g i n a l  s y s t e m  o f  Eqsl. ( 1 ) ,  ( 2 ) ,  we w i l l  u se  t h e  s y s t e m  o f  Eqs.  ( 1 ) ,  ( 4 ) .  
E q u i v a l e n c e  o f  t h e  s o l u t i o n s  i s  i n s u r e d  by s a t i s f a c t i o n  o f  t h e  c o n t i n u i t y  e q u a t i o n  on t h e  
b o u n d a r i e s  [ 6 ] .  

The s o l u t i o n  o f  s y s t e m  ( 1 ) ,  (4 )  must  be found  f o r  t h e  f o l l o w i n g  b o u n d a ry  c o n d i t i o n s :  

Vlx~S, = V0 (x), 
s.H.nl~es~ = 0, 

n. H- nlxeS~ = -- Po, 

v.VI~es = 0. 

The motion of the free surface obeys the kinematic condition 

(5) 

(6) 

(7) 

(8) 

.of + V . v / =  o. 
Ot 

(9) 
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Fig. i. Mass residue referred to mass 
at initial time vs nonlinearity param- 
eter k (i, W = 0.126; 2, W = 2, conical 
vessel; 3, W = 0.8; 4, W = 12.8, cylin- 
drical tank) and vs plasticity parameter 
S (5, W = 2, conical vessel; 6, W = 3.2, 
cylindrical tank). 

The solution region is either a cylindrical tank or a conical vessel connected to a cylindri- 
cal drain insert. In view of the axial symmetry only half of the flow region need be con- 
sidered. Symmetry conditions are satisfied on the axis of symmetry. The flow rate at the 
output of the drain orifice is considered known, with the velocity profile coinciding with 
the profile of stabilized flow of a liquid of corresponding rheology in a circular tube. 

2. Method of Solution. The problem formulated can be solved by a finite difference 
method, the basic concepts of which are described in [6]. Included in the calculation cycle 
of computing velocities and pressures are steps of determining effective viscosity and correc- 
tion velocity potential values. The latter is an effective method of eliminating accumula- 
tion of approximation errors in satisfying the incompressibility condition [7]. 

Rheological equation (3) is taken in the form Tij=2Beij. In dimensionless form the effec- 
tive viscosity B is written in the following manner: 

I I Im)~ 
B = A (S1/= + A '  . (10) 

In  c a l c u l a t i n g  f l ows  w i t h  q u a s i s o l i d  c o r e s  o r  s t a g n a n t  zones  t h e  u s e  o f  Eq. (10)  c a u s e s  s e r -  
i ous  d i f f i c u l t i e s  i n v o l v i n g  t h e  s i n g u l a r i t y  as  k + O. In  c o n n e c t i o n  w i t h  t h i s  t h e  e f f e c t i v e  
v i s c o s i t y  i s  c a l c u l a t e d  w i t h  t h e  m o d i f i e d  e q u a t i o n  

B - 1 ($1/ .  q_ (A q- e)l/m) ". (11)  
(A + s) 

This modification, which as e + 0 permits a limiting transition to the Shul'man model, makes 
possible indirect calculation of flows with the presence of quasisolid cores and stagnant 
zones. The value of the free parameter E is chosen for stability of the numerical calcula- 
tion with the smallest possible distortions of the flow character. Numerical experiment re- 
vealed that the value e = 0.05-0.1 satisfies this condition for the entire range of rheologi- 
cal parameters studied. 

3. Calculation Results. In the general case of a nonlinear-viscoplastic Shul'man me- 
dium the character of the flow which develops for slow (Re << i) pouring and, consequently, 
the mass residue left in the vessel when the free surface reaches the pouring orifice is 
determined by the vessel geometry, initial fill height H0, values of the nonlinearity parame- 
ters n, m, and the complexes S and W. The quantity S, the dimensionless nonlinear visco- 
plasticity parameter, is defined by the ratio of plastic and viscous forces acting in the 
flow. The complex W is the ratio of the generalized Reynolds number to the Froude number 
and characterizes the ratio of gravitational and viscous forces. It is necessary to clarify 
the character and degree of influence on the draining process of the rheological parameters 
S, n, and m. The fundamental dependences on W, which for a nonlinear-viscoplastic medium 
are qualitatively the same as for a Newtonian liquid, are presented in [3]. 

In studying outflow of nonlinear-viscous liquids (S = 0) for other conditions equal 
the defining parameter will be the rheological constant k = n/m. Values of mass residue re- 
ferred to the mass at the initial time for draining from a conical reservoir with ~0 = ~/6, 
H 0 = 5.27 as functions of the nonlinearity parameter for two values of the complex W are 
presented in Fig. i (curves I, 2). With increase in k the value of the residue decreases 
for both values of W: The free surface maintains a horizontal form longer, the funnel forms 
at lower height, and a film of smaller thickness remains on the solid wall. Differences in 
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Fig. 2. Free surface forms: a, b) conical vessel; 
a) W = 0.126; b) W = 2; i) k = 1.6; 2) i; 3) 0.2; 
c, d) cylindrical tank; c) W = 0.8; d) W = 12.8; i) 
k = 1.5; 2) 0.8; 3) 0.5. 

the forms of the free surface at the time of completely formed funnels, leading to the in- 
dicated dependence of the mass residues, are shown in Fig. 2a, b. At the time of funnel 
formation and the almost instantaneously following breakthrough of air into the pouring 
orifice the vicinity of the axis of symmetry near the free surface is a zone of high de- 
formation rates. As a consequence of this, for a pseudoplastic liquid the vicosity de- 
creases toward the axis, which encourages funnel formation more rapid than for a Newtonian 
liquid. For a dilatant liquid the effective viscosity values increase toward the axis of 
symmetry, which leads to maintenance of a horizontal surface for a longer time than for a 
Newtonian liquid. It also follows from Fig. 2a, b that for the case of dominance of vis- 
cous forces over gravitational ones (W = 0.126) change in the parameter k leads to smaller 
differences in the mass residues as compared to the case where these forces are of the same 
order of magnitude (W = 2), since for decrease in k the increase in residues due to growth 
in thickness of the liquid film remaining on the walls is somewhat compensated by expansion 
of the valley region near the axis due to "liquefaction" of the pseudoplastic liquid in 
this zone of highest deformation rates. 

The solid line of Fig. 2b shows a film constructed by the technique of [4] for k = 1.6, 
the form of which agrees quite well with the film form obtained in the present study. 

We will consider the features which develop in draining of a nonlinear-viscous liquid 
from cylindrical vessels. In this case flow occurs with the presence of a turbulent zone 
near the corners of the vessel. In view of the low intensity of the turbulent motion these 
zones can be considered stagnant. The dependence of mass residue on the nonlinearity param- 
eter is shown in Fig. i (6 = 2.5, H 0 = 3, curves 3, 4)~ First, it can be concluded that 
for the given range of change in k and W the mass residue in the vessel at the moment when 
gas contacts the drain orifice depends only insignificantly on the nonlinearity parameter. 
Second, in the case where gravitational forces dominate over viscous ones (W = 12.8) there 
is some increase in residue with increase in k in contrast to W = 0.8 and the dependences 
constructed for a cone-shaped vessel. To explain these results we must commence from the 
character of the changes in the free surface form, which in turn are caused by the nonlinear 
dependence of viscosity on deformation rate. Free surface forms for various k are shown in 
Fig. 2c, d. For W = 0.8 the value of the nonlinearity parameter exerts the same effect on 
free surface form as in the case of a cone-shaped vessel. For sufficiently large W, in par- 
ticular, at W = 12.8, the size of the stagnant zone at the vessel corners begins to affect 
the free surface form. This explains the surface locations for various k in Fig. 2d. Fig- 
ure 3 shows the vertical size of the stagnant zone L as a function of the nonlinearity param- 
eter at the initial time. The value of L was determined from the velocity fields obtained 
above. The triangle denotes the value of L obtained by solution of the problem of creeping 
flow of a Newtonian liquid in a channel with abrupt restriction [8]. The good agreement with 
the L value obtained in the presence of a free surface permits the conclusion that the effect 
of the latter on the flow is insignificnt in the vicinity of the sudden restriction. In ad- 
dition, we will note that the dimensions of the stagnant zone undergo practically no change 
during the time of free surface motion until the latter reaches the drain orifice. Thus, 
the basic cause of increased mass residue with increase in the parameter k is the growth in 
size of the stagnant zone. Gravitational forces should here dominate over viscous ones 
(i.e., the number W should be quite high), in order that the outflow regime be realized 
with preservation of a horizontal free surface which reaches the vicinity of the stagnant 
zone, whereupon the effect of the latter appears. 

753 



Z 

o,z 

q5 

% 
Fig. 3 

a 

i 

Fig. 4 

Fig. 3. Stagnant zone size vs nonlinearity parameter for 
drainage from a cylindrical vessel (~ = 2.5, H 0 = 3, W = 
0.8). 

Fig. 4. Flow structure: a) initial moment; b) time of gas 
contact with drain orifice. 

The presence in the liquid rheological behavior of a yield point leads to significant 
changes in the drainage process. We will first consider the features found in numerical 
calculations for the case n = m = 1 (a Shvedov-Bingman plastic). 

Residual masses as functions of the plasticity parameter S for cone-shaped and cylin- 
drical vessels are shown in Fig. i (curves 5, 6). Increase in residue with growth in S 
initially occurs quite intensely (S < i), after which the dependence becomes weaker. The 
corresponding changes in free surface are caused by an increase in effective viscosity in 
the flow region upon rise in viscoplastic properties. Like a decrease in the ratio of the 
Reynolds and Froude numbers, this leads to growth in the liquid layer which remains on the 
solid walls and an increase in the height of funnel formation. On the other hand, for a 
linear-viscoplastic medium, just like a pseudoplastic liquid, it is characteristic that the 
effective viscosity decreases with increase in deformation rate, which leads to increased 
slope of the free surface near the axis of symmetry and expansion of the depression region 
(funnel). This is the cause of the slowing in the rate of increase of residual mass with 
increase in plasticity parameter. 

In the case of flow of a viscoplastic medium under consideration here the question of 
development and evolution of quasisolid cores and stagnant zones is of interest. As a con- 
dition for distinguishing quasisolid flow zones we may take 

B.A<S. (12) 

Equation (12) is a dimensionless analog of the following inequality 

] / -~ < n. (13) 

Inequality (13) defines the limits of quasisolid zones precisely only in the limiting case 
of a medium which obeys Shul'man's equation (3). Condition (13) was used in [9] to distin- 
guish quasisolid cores in a study of convection of a viseoplastic liquid in closed regions. 
Numerical calculations performed with the Williamson model, which for n = m = 1 is equiva- 
lent to Eq. (ii), have shown that for sufficiently small e arbitrary distinction of such 
zones with Eq. (13) produces a good approximation of the flow structure of a Shvedov-Bingman 
liquid. In the present calculations it was also found that beginning at e ~ 0.1 the boundar- 
ies of the zones distinguished undergo practically no change. For e < 0.01 there is a signi- 
ficant increasein effective viscosity in the region of quasisolid flow, which is accompanied 
by an abrupt increase in the number of iterations required for convergence. The definition 
of quasisolid zones by a generalized rheological equation in the form of Eq. (ii) is arbi- 
trary in that we speak of smallness of deformation rates in those zones as compared to the 
viscous flow region, rather than total absence of deformation. 

Evolution of quasisolid cores and stagnant zones was traced for thecase of draining 
from a cylindrical vessel for the following parameter values: 8 = 2.5, W = 3.2, H0 = 6, 
n = m = i, S = i. The flow structure is depicted in Fig. 4, where the cross-hatched areas 
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denote quasisolid flow zones defined by Eq. (12). There is a core in the drain orifice 
which remains practically constant over time. A core forms in the vessel limited above by 
the free surface. Between the core and the solid walls viscous flow occurs. During the 
drainage process destruction of the core occurs, beginning in the vicinity of the axial point 
of the free surface and being completed by the time the free surface reaches the drain ori- 
fice. The stagnant zone at the corner of the vessel decreases insignificantly. After forma- 
tion of a film on the solid wall yet another zone in which flow is absent forms, in the upper 
portion of the film. This zone increases with time. 

In another variant of the calculation with the same data, but an initial filling height 
H 0 = 3, quasisolid flow zones are found in the drain orifice (central core) and the corners 
of the vessel (stagnant zone). No core is formed in the vessel itself in this case, so that 
a drainage regime with intense liquid motion in the vicinity of the axis and rapid funnel 
formation is realized. The free surface immediately takes on a convex form with a depres- 
sion on the axis without any film formation on the solid wall. 

Thus, there exist two characteristic regimes of drainage of viscoplastic media with dif- 
ferent flow structures. These are distinguished by the ratio of the initial filling height 
to the critical height at which the funnel is formed (which for the case under consideration 
is approximately equal to three). 

Nonlinear-viscoplastic liquids may manifest both pseudoplastic and dilatant properties 
depending on the ratio of the nonlinearity parameters n and m [5]. The effect of the param- 
eters n and m on the drainage process was studied with a series of calculations for a cone- 
shaped vessel (~0 = v/6, H 0 = 5.27, W = 2, S = 0.55, n = 0.4-1.6, m = 1-1.6) and a cylinder 
($ = 2.5, H 0 = 3, W = 3.2, S = i, n = 0.7-2, m = 1-3). Analysis of the results obtained in- 
dicates that increase in m for n = const leads to changes in the free surface form at the 
moment of gas appearance in the drain orifice, equivalent to those observed upon increase in 
the pseudoplastic properties of a nonlinear-viscous liquid. In the case considered increase 
in the parameter m also leads to increase in the thickness of the liquid layer remaining near 
the walls, and expansion of the depression region near the axis of symmetry. Changes in the 
free surface form are accompanied by insignificant increase in the mass residue (by 3-4%). 
With increase in n (m = const) the changes in rheological behavior are of an opposite charac- 
ter, but for the range studied have practically no effect on the value of residual mass. 
Variation of the parameters n and m (n = m) over the range 0.7-2 also led to no significant 
differences, although there was a slight increase in residual mass for increase in n, m 
(~5%). 

Thus, the rheologieal behavior of the liquid has a significant effect on the character 
of drainage from axisymmetric vessels only for significant deviations of the flow curve 
from Newton's law. The presence of a liquid yield point produces the greatest differences. 

NOTATION 

~, stress tensor; p, density; g, gravitational force vector; V, velocity vector; T, 
deviator of stress tensor with components ~ij; To, yield point; ~, n, m~ constants of the 
Shul'man. . model; ei',j deformation rate tensor components; A = (2~.-~..) I/2,1] 31 deformation rate 
intenslty; p, pressure, I, unit tensor; $I, free boundary; S, flow region boundary; S 2 = 
S/St; Vo(x), specified velocity vector (on fixed solid wall Vo(x) = 0); n, s, unit vectors 
normal and tangent to free surface~ f(x), function describing free surface; B, dimensionless 
effective viscosity; S = ~0(R/~V) nlm, dimensionless nonlinear viscoplasticity parameter; R, 
drain orifice radius; V, modulus of mean flow velocity in drain orifice; e, small parameter; 
Re = pV2(R/~V) n/m, generalized Reynolds number; W = pgR(R/~V) n/m, ratio of Reynolds and 
Froude numbers; H0, initial liquid level above drain orifice, referenced to R; $0, conical 
vessel semiangle; ~, ratio of cylindrical vessel diameter to drain orifice diameter; T2, 
second invariant of stress tensor deviator. 

i, 

2. 

3. 
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EXPERIMENTAL INVESTIGATION OF THE EFFECT OF LOW-FREQUENCY 

FLUCTUATIONS OF THE LIQUID FLOW RATE ON THE MINIMUM 

IRRIGATION DENSITY IN FILM FLOW 

S. E. Shcheklein and V. I. Vel'kin UDC 532.52 

It is shown that when low-frequency fluctuations (3~7 Hz) are imposed on a 
stream of liquid being fed to a channel, the minimum irrigation density in 
the film is reduced by a factor of 2-3 times compared with the case of non- 
fluctuating flow. 

One of the fundamental technical characteristics of film flows and disperse-film flows 
is the existence of a minimum irrigation density [i]. This characteristic determines the 
conditions for the wetting of heat transfer surfaces by the liquid and has an important ef- 
fect on heat transfer to the film, the value of the maximum wall temperature, and the criti- 
cal heat flux corresponding to the occurrence of a heat transfer crisis of the second type. 

A number of papers have dealt with experimental and theoretical investigations of the 
minimum irrigation density [2-6]. All the authors have mentioned the important effect on 
the value of the minimum irrigation density of the kinetic energy of the film flow and the 
surface tension energy at the interface. Different irrigation densities have been noted 
corresponding to the onset of breakup of the film, and irrigation densities at which dry 
spots which have formed are eliminated. 

This difference, which is explained by the hysteresis of the wetting contact angle, 
amounts to 450-1200% or more, and depends on the temperature of the liquid at the inlet, the 
temperature difference at the inlet between the wall and the film, the roughness and clean- 
ness of the material of the surface being wetted, and the construction of the distributing 
device. 

For improving the wetting of dry surfaces by irrigation, recommendations have been 
made to use shaking [4] or vibration of the film equipment, or a brief considerable increase 
in the irrigation density [5]. 

It is obvious that all these measures are aimed at increasing the kinetic energy of the 
film flow to a value which exceeds the energy of the surface tension forces at the interface. 
At the same time, these methodsof improving the wettability are very technologically ineffi- 
cient, and often reduce the reliability of the equipment. 

The present paper presents the results of an investigation of the possibility of in- 
creasing the kinetic energy of a wavy film flow by means of artificial perturbations imposed 
on the liquid stream by a bellows pulsator. 

S. M. Kirov Polytechniclnstitute of the Urals, Sverdlovsk. Translated from Inzhenerno- 
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